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The trajectory method is generalized to the case of the escape into a vacuum of a 
binary gas mixture with molecules of considerably different masses and sizes, with 
allowance for the initial nonuniformity of the distribution of the heavy component 
in velocity space. 

In an analysis of the problem of supersonic flow of a gas mixture of components with 
considerably different molecular weights, by analyzing the Boltzmann equations one can 
indentify two characteristic zones and construct mathematical models of the flow in each 
of them. 

The model proposed here enables one to allow for the velocity spread of the heavy com- 
ponent and is, in this sense, a generalization of the dynamics of multiphase systems based 
on the trajectory model [i]. The transport of SF 6 molecules by N 2 carrier gas is calculated 
below as an example. Calculated results are given for different values of the escape param- 
eters. 

Such an approach obviously can be used to solve the problem of the transport of clusters, 
which are formed in supersonic nozzles and jets, by the light (carrier) component. This is 
related primarily to the fact that small clusters cannot be treated as particles of an impur- 
ity phase, applying directly to the calculation of their motion the methods of the mechanics 
of multiphase media, based on the hypothesis [2] of interpenetration of continua, of which 
only the carrier gas has an intrinsic pressure, since the random motion of clusters cannot be 
ignored in an analysis of a "gas" of small clusters. During expansion in a nozzle or a super- 
sonic jet, however, the drop in the density of the escaping gas mixture means that it becomes 
possible to ignore the interaction between particles of the disperse phase and, after some 
generalization, to use the methods of calculation of multiphase media. 

An analysis of the flow of a binary mixture in a nozzle or jet enables one to identify 
the following characteristic regions of flow. 

io A zone in which one cannot.ignore collisions between heavy particles (molecules) and, 
in this connection, one cannot consider the "gas" of particles to be a medium without pres- 
sure. To calculate the flow of such a mixture, one can use the ideal of an equivalent gas 
with an effective molecular mass and an effecitve adiabatic index, as is usually assumed for a 
binary gas mixture. 

2. A zone in which the motion of the heavy component can be treated as the motion of a 
collisionless mixture; here one must remember, however, that the initial conditions for the 
particle parameters are the conditions determined by flow in the preceding zone. 

In this case, in addition to the mean hydrodynamic velocity, the particles will possess 
a velocity spread about the mean value. Whereas in calculating the parameters of the motion 
of heterogeneous media one can, because of the enormous difference in masses, neglect the 
departure of the velocities of heavy particles from the mean value, in the present case this 
neglect may result in considerable errors in obtaining the spatial distributions of the parti- 
cles. 

Such a division has a purely arbitrary nature, of course, since here we ignore the 
existence of a transition zone, in which neither of the proposed approximations may be used. 
The question of the possibility of calculating the parameters in this zone will be considered 
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Fig. i. Variation of the dimensionless parameters to the 
collision integrals for molecules of the light (egg) and 
heavy (gDD) gases and for collisions between them (eD~, 
~D) along the axis of symmetry of the jet: I, II) flrst 
an~ second calculation zones (sij, i = p, g; j = p, g). 

below. We note that this division has more a relative nature and is founded on empiri,zai 
considerations. In this connection, it would be desirable to obtain more rigorous estimates 
of the possibility of using the proposed approach and fairly well-founded equations fo:: the 
macroscopic parameters of the mixture. The kinetic approach to describing the motion of 
a heterogeneous mixture, developed in [3], seems the most promising for achieving this aim. 
In accordance with this approach, a Boltzmann equation with interphase collision integrals 
is written for each component of the mixture. After these equations are made dimensionless, 
it becomes possible to isolate the dimensionless parameters that determine the form of the 
equations describing the flow in each of the aforementioned zones. 

i. Estimation of the Parameters of the Kinetic Equations 

Let us consider the system of Boltzmann equations for a mixture of heavy and light compo- 
nents, 

Df~ = %~Ig~ + %~Igp, O~v = %vlpv + %zlvz, ( 1 ) 

where fg and fp are the distribution functions for the light and heavy gases, respectively. 
The dimensionless parameters in the collision integrals are (see [3]) 
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where ~gg=~d~; ~gm=--~(dg+dp)~; ~pp=~d~ are the scattering cross sections; mg, mp, dg, and dp 

are the masses and radii of molecules of the carrier gas and of the heavy molecules, respec- 
tively; k is the Boltzmann constant; L is the characteristic size for the problem; Tg, Tp, ng, 
and np are the characteristic kinetic energies and number densities of the carrier and heavy 
gases; Ug and Up are the characteristic velocities of the components. We note that until the 
transition to the equations for the macroscopic parameters has been made, we cannot talk 
about such macroscopic characteristics as the temperature, the hydrodynamic velocity of the 
medium, etc. In this connection, we shall understand the characteristic values of the param- 
eters to be the values of the mean velocity and the mean energy of the random motion. In 
analyzing Eqs. (i) with respect to the parameters (2), we can distinguish the following cases: 
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1 ) esrg >> I, epp >> I, %p >> 1, ej, z >> I. 

This case corresponds to the flow of a binary, one-temperature, one-velocity mixture, 
since the presence of a large parameter on the right sides of all the equations in system 
(i) indicates that global Maxwellian equilibrium is established at times much shorter than 
the gas-dynamic time [4]. We may thus talk about the motion of a one-temperature, one-veloc- 
ity medium, for which we may introduce the concept of an equivalent gas with an effective 
molecular weight on an effective adiabatic index. This corresponds to the first zone of 
calculation mentioned above: 

2) 

A one-velocity, two-temperature flow regime occurs in such a situation. The motion of the 
mixture may then be described by the energy continuity equations for each of the components 
and by a general equation of momentum transport. In the present work we shall ignore the 
existence of a region with such a relationship of dimensionless parameters. 

3) 8~  >> 1, Spp ~< 1, 8rp > 1. 

This combination of parameters corresponds to the transitional regime, in which the 
collisional and convective parts of the Boltzmann equation for the heavy component become 
equal in order of magnitude. Calculating in this zone presents the greatest difficulties, 
but this zone is often negligible in zize, according to estimates. Otherwise, one can, us- 
ing the moment method, for example, obtain equations for the macroscopic parameters of the 
components. This derivation is not given here because the transition zone is fairly small 
in the problem under consideration. 

4) 

In the latter case, because Epp << i, we can ignore collisions between heavy molecules, and 
the collision integral for molecules of the light gas becomes the leading term determining 
the collisional part of the Boltzmann equation for the heavy component. Because g~g z i, 
the collisional and convective parts have the same order of magnitude. Equations for the 
macroscopic parameters of the heavy gas may be derived using the moment method. This case 
obviously corresponds to the second calculation zone indicated above. It must be noted, 
however, that after the equations for the macroscopic parameters have been obtained from 
the Boltzmann equation by the moment method, a problem arises in connection with the solu- 
tion of these equations, since in the initial cross section of this calculation zone the 
velocity distribution function of the heavy component is not deltoid, which prevents the 
direct use of the trajectory method that is widely used to calculate a collisionless mixture. 
One possible way 0f solving this problem is given below: 

5) 8 ~  1, % p ~  I, ~p ~ I, % z ~  I. 

Case 5) corresponds to free dispersal of the heavy molecules without interacting with each 
other or with the carrier component. In concluding this section, we note that we have con- 
sidered only conditions under which Egg >> I. Hare the latter case may not occur in pratice. 

2. Conversion to Macroscopic Parameters 

As noted above, the equations for the macroscopic parameters of the components, which 
correspond to the first calculation zone, are the equations of motion of an equivalent gas 
with effective parameters, so no problems arise in connection with calculating the parameters 
of motion of such a gas. Matters are different in the second calculation zone. Let us con- 
sider this problem in more detail. We start with an examination of the trajectory model, 
which is widely used to calculate flows of mulitphase media, but which is well-founded at 
present only at the phenomenological level, being based on arguments of an empirical order. 
If we consider the normalized distribution function of the heavy molecules, then for this 
model it is fv=nv{rv, t)8(v~--u~), i.e., we assume that at each point of space there is no 

spread in the velocities of the particles owing to their fairly large mass. In the initial 
cross section of the calculation zone we now subdivide all of coordinate space into regions 
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Fig. 2. Distributions of mass density of the heavy 
component (SF 6 molecules) in cross sections of the 
jet at the following distances from the critical 
cross section of the nozzle: a) X = 0.08 m; b) 0.120m; 
i) calculations with (N v = 13) and 2) without (N v = 
i) allowance for the initial velocity nonuniformity 
of the heavy component (Y = Y/d,, X = X/d,). PSF~, 
kg/m a . 

, with ARv-~O We juxtapose each region ~r to a characteristic function, 

Xr -~ I for rvCQ~, 
(3) 

Using the fact that ARp-~O , we may approximate the function fp as precisely as derived by 

the sum ~iNpXrS(fp--Rp) where Np is the number density of particles whose coordinates lie 
u 

inside region ~r" In accordance with this method of subdivision, we can treat the initial set 
of particles of the heavy component as a mixture of gases that differ only in their positions 
in the initial calculation cross section, if we now formally write the Boltzmann equation 
for such gas, 

'Ot toll' (4) 

where Up is the mean velocity of the ensemble of particles from region ~r and ~p is the veloc- 
ity of an individual particle, then because the particles do not collide with each other, 
the right side of Eq. (4) determines only the collisions with molecules of the light (carrier) 
gas. Using the component method [4], it is easy to show that after integrating Eq. (4) over 
velocity space and the coordinates with weights ~=i, r,, 5p , we obtain the equations 

dNp = O, (5) 
dr 

dR~ = up, (6)  
dt 

du~ ------Fp~. (7) 
dt 

In integrating Eq. (4), we use the fact that the relative flow of the light component o,:curs 
in the free-molecule regime; the collision integral for heavy molecules colliding with :Light 
ones is converted into the force of interaction between the components, 
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where C D is the coefficient of aerodynamic drag of a praticle (molecule), which may be deter- 
mined analytically [5]. Equations (6)-(7) thus correspond fully to the equations of a test 
particle in the trajectory model, while Eq. (5) ~escribes the conservation of particle num- 
ber along its trajectory. If we now return to the problem of calculating the parameters 
in the second calculation zone, then the velocity distribution function of molecules of the 
heavy component in the initial cross section is not deltoid, as noted earlier, which hinders 
the use of the above-described method. If we now extend the discussion of this model to 
the case of velocity nonuniformity of the heavy molecules at a fixed point of physical space, 
however, then the phase space of velocities and coordinates can be subdivided into 
regions ~=~r+~, with ~={up, up+Av} , and we can introduce the corresponding character- 
istic functions Xv by analogy with (3). it is then easy, by manipulations analogous to the 
foregoing, to obtain equations analogous to (5)-(7). 

This actually means that after subdividing the heavy gas in physical space into indi- 
vidual fractions ~r, lyingat every fixed point of the initial cross section, we subdivide 
each of these fractions intofraotions ~v in accordance with the particle velocity distribu- 
tion. We use the usual method of calculating multiphase flows, calculating the parameters 
of the carrier gas using a Godunov difference scheme, and integrating Eq. (7) along the tra- 
jectories of test particles [i]. 

3. Numerical Realization and Calculation Results 

The results of a calculation of the transport of SF 6 molecules by nitrogen in a conical 
nozzle during escape into a vacuum are given below as an example. In the first calculation 
zone, where the flow of the mixture may be described by an equivalent gas, a steady-state 
Godunov analog - the Ivanov--Kraiko scheme [6] - is used to calculate the parameters. To 
calculate the flow parameters in the second zone, the same scheme is used for the carrier 
phase, while the parameters of the heavy gas are obtained by integrating Eq. (7) along the 
trajectories. Here the force interaction between components [i] is taken into account at 
each half-step, which is chosen from the conditions of stability in calculating the param- 
eters of the carrier gas. To satisfy Eq, (6), the constancy of the flow rate n ~ along the 

streamline of each ensemble; discussed above, is taken into account in calculatlng the para- 
meters. The calculation was made for the following parameters (see Fig. i): diameter of 
critcal cross section d, = 1"10 -3 m, half-aperture angle of nozzle = 17 ~ , pressure in 
receiver P0 = 1.5"10s N/m2, nozzle length L B = 0.03 m, length of entire calculation zone L R = 
0.12 m, volumetric fraction of heavy component Z = 0.05, and ~m = 0.45. The number of cal- 
culating cells was chosen to be N =-30 for the carrier gas and the number of subdivisions 
of physical space for the heavy gas was N r = 30. The program was written in Fortran-IV, the 
calculations were made on an ES-I045 computer, and the calculation time was bout 20 min with 
N v = 1 and about 60 min with N v = 13. 

In Fig. 1 the variation of the dimensionless parameters of Eqs. (i) along the flow axis 
is shown, and calculation zones I and II are shown in accordance with the estimates (3)-(6). 
The distribution of the concentration of the heavy component SF e perpendicular to the flow 
axis in two calculation cross sections is shown in Fig. 2. Here we give the results of cal- 
culations for different numbers N v of subdivisions into ensembles Np in velocity space. From 
these results it follows that allowance for velocity nonuniformity at the calculation points 
of the initial cross section leads to a slight change in the concentration profile of the 
heavy SF 6 molecules in the Contr61 cross section. Here it is sufficient to limit the number 
of subdivisions into ensembles Np in velocities to N v = 13, since further subdivision results 
in no significant change in the concentration profile. The total number of trajectories 
of heavy particles was Nrv = NrN v = 390 in this case. 

In conclusion, we note that the method developed is a generalization of the trajectory 
method to the case of allowance for initial nonuniformity of the distribution in velocity 
space. Characteristic zones of flow are distinguished, among which the region of applicablity 
of the trajectory method [i] is designated, including that for two-phase flows. 
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NOTATION 

I, E, collision integrals and dimensionless parameter in them; f, distribution fL~nction; 
o, scattering cross section; m, p, mass and mass density; d, diameter; T, n, characteristic 
kinetic energy and number density; u,, characteristic velocity; k, Boltzmann_constant; Up, 
mean velocity vector of the ensemble of heavy gas molecules from region mr; Vp, mean velocity 
vector of an individual heavy gas molecule; CD, drag coefficient of a heavy molecule in rela- 
tive flow of the light gas over it; P0, pressure in receiver; LB, LR, lengths of nozzle and 
calculation zone; ~ , half-aperture angle of nozzle cone; Z, volumetric fraction of heavy 
component; Nr, Nv, numbers of subdivisions of physical space and with respect to velocity. 
Subscripts denote the following parameters: g, light (carrier) gas; p, heavy gas; *, in the 
critical cross section of the nozzle. 
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